THE COMMERCE IN RUBBER
THE FIRST 250 YEARS

AUSTIN COATES

COMMISSIONED BY THE
SINGAPORE INTERNATIONAL CHAMBER OF COMMERCE
RUBBER ASSOCIATION

SINGAPORE
OXFORD UNIVERSITY PRESS
OXFORD NEW YORK
1987
Contents

Preface v
Illustrations xiii
Maps xv

Part I The conundrum tree 1735–1876

1 Enigma—Spanish American sightings—La Condamine in Peru—his journey down the Amazon—Pará—Fresneau in Cayenne—Paris 1

2 French scientific investigations—exports from Brazil—Joseph Priestley—hevea brasiliensis—early uses of caoutchouc in France 3

3 India-rubber—gasworks—manufactorying industry—Thomas Hancock—Charles Macintosh—Michael Faraday 14

4 New England rubber industry—Roxbury—collapse of 1837—Charles Goodyear—Nathaniel Hayward—sulphur—the Hancock patent 20

5 The Goodyear patent—‘vulcanization’—the Great Exhibition—Goodyear in London and Paris—challenge to Hancock’s patent 29

6 Development of trade—Brazil and Britain—predominant American demand for rubber—London the world market centre 37

7 Mincing Lane, City of London—the London Commercial Sale Rooms—General Produce Brokers’ Association—conduct of the rubber trade—Congo rubber 43

Part II Rubber moved across the world 1852–1895

8 Cultivation in plantations—Clements Markham in Peru—his transplanting of cinchona (quinine) from Peru to India—his decision to transplant rubber to India 50
CONTENTS

9 Abortive plantings in Calcutta and Sikkim—Henry Wickham—movement of seeds from Brazil to Kew—Wickham’s note on the Malay Peninsula—seedlings planted in South India and Burma—Ceylon—Ceara rubber—failure and hiatus

10 Singapore Botanic Gardens—Sir Hugh Low—Ceara rubber—failure and hiatus—complacency

11 Europe—electricity and tyres—Pirelli—Dunlop—Michelin

Part III Cultivation takes hold 1877–1904

12 Brazil—debt-enslavement and extended credit—freeing of slaves—Republic—flight of gold—inconvertible currency—collapse of sugar—coffee priced out of the market by wage demands

13 Henry Ridley—fall in price of Brazilian coffee—Malayan coffee replaced by rubber—Swettenham—official Malayan indifference to rubber

14 Plantation labour in Malaya—South Indians—Sultan Ibrahim’s estates—Chinese plantations

15 The London agency house—the Singapore agency house

16 Indonesia—cultivated rubber on the market—reactions in London and New York

17 Akron, Rubber City—Goodrich—Goodyear—Firestone

Part IV World swing from wild to cultivated 1904–1913

18 Price engineering—‘the Brazilian pool’—British investment in rubber plantations—unprecedented price moves—American bank panic and recovery—boom conditions

19 Colombo free market—the great London rubber boom

20 The boom and its aftermath—London—Brazil—Congo—Shanghai

Part V The Singapore market phenomenon 1906–1921

21 Chinese shop auctions—Coghlan auctions in Raffles Place—Siamese rubber—railway extension to Johore Bahru

22 Guthrie auctions—Chamber of Commerce Rubber Association—free market—grades and types of rubber—retirement of Henry Ridley
CONTENTS

23 Retail to wholesale—Singapore’s mobile brokers—the weekly price 186
24 Rubber in time of war—Singapore direct Pacific trade to America—Firestone and Goodyear representation in Singapore—Goodrich and the rubber bale—Singapore sets the world price of rubber—facile princeps 190
25 The Singapore rubber boom of 1919—American cotton and rubber crash of 1920—Singapore crash—prolonged slump—Malayan plantation economies—destitute Britons 197

Part VI Political rubber 1920–1928 205
26 Restriction—William Duncan and the Dutch planters—Winston Churchill at the Colonial Office—Sir James Stevenson—the Dutch waiting game—Malayan planters’ demand for restriction—Churchill’s endorsement of the Stevenson Plan 207
27 Ceylon and the absent Europeans—Malayan smuggling—the coupon market—Native Rubber 221
28 Firestone musters the household gods—Edison’s search for a plant substitute—Ford plantations in Brazil—Firestone plantations in Liberia—Herbert Hoover as Secretary of Commerce 232
29 The London rubber boom of 1925—‘a threat to world peace’—Hoover’s retaliation—reclaiming—complacent Baldwin cabinet—Singapore brokers and Malayan planters condemned by their own press—Beaverbrook press outcry 238
30 Empire obedient to a colony—Downing Street unaware of American time—the report which could not be published—end of restriction 247
31 The ‘futures’ market—liquid latex—crépe shoes—research—Singapore—Burma—India—Sarawak 254

Part VII ‘Events outside our borders’ 1929–1945 265
32 The Great Slump—ghostly silence in the plantations—the Wijnand proposal for a rubber convention 267
33 The Hague Convention of 1934—rubber regulation—Soviet secret purchasing—sagyiz—neoprene—buna 274
34 Oncome of war—Sir John Hay’s influence on the International Rubber Regulation Committee—at the White House—the August 1940 decision on synthetic rubber 283
CONTENTS

35 Fall of Singapore—Ceylon in wartime—Co-Prosperity in the Straits—the Japanese blow to colonialism—communist designs for East Asia’s future 290

Part VIII Science and synthetic 1945-1986 301

36 Post-war resurgence of natural rubber—labour troubles in Singapore—dishonesty—Malayan rubber at risk—the struggle with the packers 303

37 Communist war in Malaya—independence and deterioration of conditions in Indonesia—the Korean War rubber boom—Russia and the rubber market 317

38 Science to the rescue—clonal rubber—French invention of granulated rubber—similar evolution in Malaysia—Chinese entry into comprehensive and international rubber business—Singapore world rubber market centre 330

39 Natural rubber’s most critical years—political turmoil and riots in Singapore—Chinese and Europeans combine to form the Rubber Association of Singapore—Federation of Malaysia—Confrontation with Indonesia—Singapore a Republic—massacre in Indonesia—rubber production doubled 339

40 Adjustments in the former colonial East—Singapore brokers—global dealers—the multi-commodity market—Malaysia—Vietnam and Cambodia—Sri Lanka—Burma 351

41 Demand for natural rubber—natural and synthetic complementary—radial tyres—the Pacific basin and world industry—shift of balance from West to East—commodity control—further research into the hevea tree—world output 364

Sources and Bibliography 373

Index 376
The juice which is found in the bark of the hevea tree, from which most of the world’s natural rubber comes, looks like milk. A diagonal incision in the bark of a mature tree is sufficient to cause the milk-like juice to flow very slowly out, and a cup of metal or coconut is tied to the tree at the lowest point of the incision to receive the flow.

Within hours of being extracted, the milk begins to darken toward a golden brown colour and thicken. At a certain stage, when it is no longer liquid yet still pliant, a piece of the substance can be stretched repeatedly to many times its length, and after each stretching return to about the same dimensions. Nothing else in nature possesses such elasticity.

The darkening and thickening continues, and after less than three days in a hot climate, the formerly milk-like juice has become dark grey-brown and solid. In this state it can be cut with a knife, and thin strips of it retain their elasticity; but pieces so cut cannot be re-united to form desired shapes. The substance can be moulded and shaped for useful purposes only when it is liquid and fresh from the tree.

This was the problem which rubber presented to men of science when they first encountered it, in Peru in the year 1736. It clearly possessed remarkable properties; but if it was to be applied to civilized man’s uses, it meant at that date that it must be brought to Europe; and before it was even out of the forest, and long before it reached a ship, it turned into hard, intractable lumps, of which the only virtue was that if a ball-shaped piece of it was dropped on the ground it bounced.

Rubber is produced by a fairly wide variety of trees and bushes of different genera, most of them growing in the world’s equatorial belt, whether in America, Africa or Asia, and between the latitudes of the tropics similarly, though only in regions of abundant rainfall and high humidity. It came to the cognizance of Europe through the discovery of the New World.

Michele de Cuneo, a traveller on Columbus’ second voyage to
America in 1493, wrote in a letter dated the following year: 'There are also trees that give milk when cut, of which they make a kind of wax, which we used."

The first published reference to it, and to its bounce, was in Peter Martyr's *De Orbe Novo*, which started publication in Alcalá in 1511, being issued thereafter in sections, terminating in 1530. On the subject of the games played by the Aztecs he wrote:

'... but the most popular game amongst them, as amongst the people of our own islands, is a game of tennis. Their balls are made of the juice of a vine that clammers over the trees, as hop vines clamber among the hedges. They cook the juice of these plants until it hardens in the fire, after which each one shapes the mass as he pleases, giving it the form he chooses. It is alleged that the roots of this herb when cooked give them their weight; at all events I do not understand how these heavy balls are so elastic that when they touch the ground, even though lightly thrown, they spring into the air with the most incredible leaps. The natives are most skilful players at this exercise, catching the ball on their shoulders, elbows, heads, rarely their hands, and sometimes their hips, if their opponents throw when their backs are turned. When playing tennis they strip, as do our wrestlers.'

Rubber was first seen in Europe in circumstances of considerable splendour, and at a surprisingly early date. The Spanish conquest of Mexico was accomplished in 1521. Three years later, in Seville in 1524, the Italian diplomat Andrea Navagiero, ambassador to the court of the Emperor Charles V, watched a tennis game played by a group of Aztecs brought from the New World by the friars to impress the Emperor with the Aztecs' intelligence and skills. Navagiero described the game in his *Viaggio fatto in Spagna*, published in Venice in 1563 (a thirty-year delay in publication was not unusual in those times). 'The ball', he wrote, 'was of some kind of very light wood and which bounced with extreme ease.' He was so interested that he repeated his description of the game in a letter to the geographer Ramusio.

The tennis ball used was obviously of solid rubber, and as can be judged from other sources, the games were tough. The players' bruises when hit by the ball were sometimes so severe they had to be bled. Bearing this in mind, Navagiero's conjecture that the ball was wooden is reasonable.

In general, though, it is not surprising that albeit rubber was seen in Europe, and by the greatest prince in Europe, nothing came of it.

As even the simplest actual description of rubber is sufficient to show, men of science were needed if the mysterious substance was ever to be tested and put to use; and descriptions such as the three just given—milk, wax, the juice of a vine, cooking roots, a very light wood—were
hardly enough to stimulate scientific interest, or even to indicate that all three descriptions referred to the same substance. In addition, there was the Censor to be reckoned with. Spain was the prime source of information concerning America, the printed word the greatest medium of transmission. Nothing could be printed in Spain without the Censor's approval. Such was the censorship's policy in relation to the New World that a number of descriptions which might have excited scientific interest were not published till four centuries after they were written, by which time they were mere curiosities.

Finally, Spain's years of eminence as a nation of pioneering and discovery were soon numbered. By the reign of Philip III (1598–1621), as is shown by the abandonment of the search for the 'Unknown Continent', apathy prevailed at the Spanish court over anything related to further discoveries, an attitude which reflected on the entire field of scientific inquiry.

Meanwhile Spaniards had settled down in Mexico and Peru, and were finding life agreeable. Lima, in Peru, in the seventeenth century, was quite as cultivated as some of the capitals of Europe, and more salubrious than any of them. This very quality of culture caused the current of ideas to flow the other way. Where once the Spanish court had waited eagerly for news of America, a century later the viceregal court at Lima waited eagerly for the mail from Spain.

In these unpromising circumstances rubber grew wild, as it always had, in the lower-lying parts of the country much further north, closer to the equator. No one knew much about it except for some of the natives, and they hardly mattered.

In 1735 the Académie Royale des Sciences in Paris sent an expedition to measure a degree of the meridian on the equator. Next year a similar expedition was sent to do the same on the Arctic Circle. The purpose of the two related expeditions was to determine the shape of the globe. Recent French scientific observations had questioned the prevalent assumption that the earth was circular by suggesting that it might in fact be spherical. Controversy had generated in Europe, and the intention of Louis XV, in ordering the expeditions, was to settle it by establishing the truth.

It was decided that the equatorial party should make their measurements in the neighbourhood of the mountain city of Quito, the present-day capital of Ecuador. In those times, Quito was the capital of an extensive part of the Spanish Peruvian empire with a government of its own, its chief executive nominally subordinate to the Viceroy at Lima, though for geographical reasons in effect independent of him, corresponding directly with Madrid.
The expedition sailed from France in April 1735, and arrived off the coast of Peru, at the mouth of the Rio Esmeraldas, just over a year later. Three scientists were aboard—Louis Godin, with whom this relation is not concerned, Pierre Bouguer and La Condamine—all of them typifying French learning of the time in holding a comprehensive view of science, being specialists with none of the narrowness that word can sometimes suggest.

Charles Marie de la Condamine (1701–74) was thirty-five when he reached Peru. Born in Paris, he was trained for the Army, but did not pursue it, his real interest being natural science. His military knowledge of maps led to his becoming a specialist in geodesics as well, an unusual combination for which the world has much to be thankful. Pierre Bouguer (1698–1758) was three years older, an astronomer, mathematician and hydrographer. In terms of knowledge it would be difficult to think of two men better chosen to undertake the exceedingly important task assigned to them.

They were held up at their place of disembarkation in Peru for eleven days, for want of guides and mounts to bring them up to Quito, a journey of three weeks to a month. It was a remote place in the woods, evidently country-style. Bouguer and La Condamine were intrigued by the lighting provided in their rooms after dark. In each room was set a torch about two inches in diameter and two feet long, wrapped in a double banana-leaf whenever the torch was liquid and alight. It had no wick, and it did not run, as a candle does, once it was put in place. It gave out a slight smell, which neither of the Frenchmen found in the least unpleasant, and its light was very strong. On investigation they found that half a torch of that size would burn for twelve hours.

Despite anything that may have gone before, this was the discovery of rubber.

On the twelfth day they set forth on horseback with guides up the valley of the Esmeraldas, and at each stop at day’s end, torches of the same kind were provided to lighten their nights. Along the way they learned some more, and procured several rolls of the substance—they looked like oversized rugby footballs—which La Condamine described as ‘blackish and resinous’. On 24 June 1736, shortly after their safe arrival at Quito, they despatched these to the Académie in Paris with a covering note from La Condamine, he being the naturalist among them:3

3 (5 3 8 6 7 $. $ $ 1 (* $ 5 $ 0 $ / $ < 6 , $
sun, whereupon it hardens and turns brown, first outside, and then inside. Since my arrival at Quito I have learned that the tree which discharges this substance grows also along the banks of the Amazon river, and that the Maínas Indians call it Cauotchouc; moulds of earth in the shape of a bottle are covered with it; they break the mould when the resin has hardened; these bottles are lighter than if they were of glass, and are in nowise subject to breakage.

The Maínas Indians lived on the far (eastern) side of the cordillera of the Andes, among the sources of the Amazon; and their name for the resin—actually for the tree, rather than the resin—was the one most generally used in the Amazon region. Cauotchouc (in Spanish caucho) means ‘weeping wood’—‘caa’, wood, ‘o-chu’, to weep.

During the long time the scientists spent in Quito province, La Condamine came to realize that caoutchouc was used for many purposes other than making bottles. Cloth was varnished with it to make entirely waterproof cloaks with hoods, and they were not in the least heavy to wear. He himself had a large piece of canvas coated with it and erected as a covering for his measuring instruments, which could then be left set up on their stands, sheltered from rain and snow. He also heard how at the Maínas missions—missionaries were the only Spaniards to be found in that remote region—they made waterproof boots of caoutchouc, which after they were smoked looked just like leather.

All went fairly smoothly for the scientists until, nearing the completion of their task, two stone pyramids were erected to fix in perpetuity the terminal points which were the fundamental base of all their measurements, La Condamine being in charge of these works. Each pyramid naturally bore an inscription, stating what it was and the circumstances in which it had been erected.

The inscriptions were denounced by two Spanish lieutenants of marine as injurious to His Spanish Catholic Majesty and the Spanish nation; passions were inflamed, there was uproar in the Quito parliament, and a minor riot ensued. Worse still, a legal suit was brought against La Condamine in person, and the case went on for two years. He won in the end, over the opposition of the parliament, but by this time it was 1742 and the final proof of the measurements had not yet been made.

This involved taking the angle of the same star from two different points at the same moment, and at this juncture the heavens opened. It rained for six and seven hours a day for weeks on end, while Bouguer and La Condamine waited at their respective and far-separated positions. Six months passed before, at the end of March 1743, there was a clear night sky, the star was visible to perfection, and the arc of the meridian was finally measured.